Biochemistry

Biochemistry

- Study of chemical composition and reactions of living matter
 - Biological chemistry

Organic compounds

- Molecules that contain <u>carbon</u>
 - Except CO₂ and CO (considered inorganic)
 - Carbon is **electroneutral**

 $_{\odot}$ Shares electrons; never gains or loses them

Forms four covalent bonds with other elements

Inorganic compounds

• All other compounds, not containing carbon

• Ex: water, salts, acids, and bases

Organic Compounds

- Unique to living systems
- Includes
 - Carbohydrates
 - o Lipids
 - o Proteins
 - Nucleic acids
- Often found as polymers made up of chains of similar units

Monomers

 Serve as building blocks for larger polymers

Organic Compounds

- Attached functional groups
 - Change physical and chemical properties
- Synthesized by
 - Dehydration synthesis
- Broken down by
 - Hydrolysis reactions

Figure 2.14 Dehydration synthesis and hydrolysis.

Carbohydrates

- Sugars and starches
- Contain C, H, and O

 [(CH₂0)_n]
- Functions of carbohydrates
 - Major source of cellular fuel (e.g., glucose)
 - Structural molecules (e.g., ribose sugar in RNA)
- Three classes:
 - Monosaccharides one sugar
 - Disaccharides two sugars
 - Polysaccharides many sugars

Monosaccharides

- Simple sugars containing three to seven C atoms
- (CH₂0)_n general formula; n = # C atoms
- Monomers of carbohydrates
- Important monosaccharides
 - Pentose sugars
 - Ribose and deoxyribose
 - Hexose sugars
 - Glucose (blood sugar)

Figure 2.15a Carbohydrate molecules important to the body.

Disaccharides

- Double sugars
- Too large to pass through cell membranes
- Important disaccharides
 - Sucrose, maltose, lactose

(b) Disaccharides

Example

Consist of two linked monosaccharides

Sucrose, maltose, and lactose (these disaccharides are isomers)

Figure 2.15b Carbohydrate molecules important to the body.

Polysaccharides

- Polymers of monosaccharides
- Important polysaccharides
 - Starch and glycogen
- Not very soluble

Long chains (polymers) of linked monosaccharides

Example

This polysaccharide is a simplified representation of glycogen, a polysaccharide formed from glucose units.

Figure 2.15c Carbohydrate molecules important to the body.

Lipids

- Contain C, H, O, and sometimes P
- Insoluble in water
- Main types:
 - Triglycerides
 - o aka neutral fats
 - Phospholipids
 - Steroids
 - Eicosanoids

Triglycerides (aka Neutral Fats)

- Called fats when solid and oils when liquid
- Composed of three fatty acids bonded to a glycerol molecule

Figure 2.16a Lipids.

Saturation of Fatty Acids

- Saturated fatty acids

 Single covalent bonds
 - Between C atoms
 - Maximum number of H atoms
 - Solid animal fats, e.g., butter
- Unsaturated fatty acids
 - One or more double bonds
 - Between C atoms
 - Reduced number of H atoms

Plant oils, such as olive oil, considered "heart healthy"

- Trans fats modified oils unhealthy
- Omega-3 fatty acids "heart healthy"
 - Polyunsaturated fatty acids (FUFA's)

Triglycerides (Neutral Fats)

Main functions in human body:

- Energy storage
- Insulation
- Protection

Phospholipids

- Modified triglycerides:
 - Glycerol + two fatty acids and a phosphorus (P) group
- "Head" and "tail" regions have different properties
- Important in cell membrane structure

(b) "Typical" structure of a phospholipid molecule

Two fatty acid chains and a phosphorus-containing group are attached to the glycerol backbone.

Figure 2.16b Lipids.

Steroids

- Interlocking four-ring structure
- Cholesterol, vitamin D, steroid hormones, and bile salts
- Most important steroid = cholesterol
 - Important in cell membranes, vitamin D synthesis, steroid hormones, and bile salts

Proteins

- Contain C, H, O, N, and sometimes S and P
- Amino acids (20 types)
 - Monomers in proteins
 - Joined by covalent bonds called peptide bonds
- Contain
 - Amine group (--NH₂)
 - Acid group (--COOH)
- Can act as either acid or base
- Vary by "R group"

Figure 2.17 Amino acid structures.

Proteins

- Proteins are polymers
 - Links amine end of one to the acid end of another
 - Results in a peptide bond
 - Linkage of 100s to 1000s of amino acids = macromolecule

Figure 2.18 Amino acids are linked together by peptide bonds.

Proteins

- Proteins vary widely in structure and function
 - All are constructed from different combinations of 20 common amino acids
- Two major factors contribute to uniqueness
 - Each amino acid has distinct properties
 - R groups
 - Sequence of amino acids bound together
 - Varying combinations lead to distinct proteins
 - Changes in types or positions of amino acids
- Sequence also affects levels of protein structure
- Overall structure determines its biological function

Figure 2.19a Levels of protein structure.

Figure 2.19b Levels of protein structure.

(b) Secondary structure: The primary chain forms spirals (α-helices) and

sheets (β -sheets).

 α -Helix: The primary chain is coiled to form a spiral structure, which is stabilized by hydrogen bonds.

 β -Sheet: The primary chain "zig-zags" back and forth forming a "pleated" sheet. Adjacent strands are held together by hydrogen bonds.

Figure 2.19c Levels of protein structure.

(c) Tertiary structure:

Superimposed on secondary structure. α -Helices and/or β -sheets are folded up to form a compact globular molecule held together by intramolecular bonds.

Tertiary structure of prealbumin (transthyretin), a protein that transports the thyroid hormone thyroxine in blood and cerebrospinal fluid.

Figure 2.19d Levels of protein structure.

(d) Quaternary structure:

Two or more polypeptide chains, each with its own tertiary structure, combine to form a functional protein.

Quaternary structure of a functional prealbumin molecule. Two identical prealbumin subunits join head to tail to form the dimer.

Protein Denaturation

- Globular proteins unfold and lose functional, 3-D shape
 - Active sites destroyed
- Can be cause by decreased pH or increased temperature
- Usually reversible if normal conditions restored
 Re-folded back to *native* structure
- Irreversible if changes extreme
 - E.g., cooking an egg

Enzymes

- Globular proteins that act as biological catalysts
- Regulate and increase speed of chemical reactions
 - Lower the activation energy, increase the speed of a reaction (millions of reactions per minute!)
 - Allow reactions to occur under normal physiological conditions
- Do <u>not</u> force reactions to happen
 - Highly specific in terms of reactants (substrates)

- Activation energy = energy required to prime a reaction
- Enzyme overcomes energy barrier
 - Doesn't add energy → rate by lowering energy barrier
- Metabolic reactions can occur quickly and precisely

Characteristics of Enzymes

- Enzymes are specific
 - Act on specific substrate
- Reactions are highly regulated
- Usually end in -ase

Figure 2.21 Mechanism of enzyme action.

Nucleic Acids

- Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)
 - Largest molecules in the body
- Contain C, O, H, N, and P
- Polymers
 - Monomer = nucleotide
 - Composed of nitrogen base, a pentose sugar, and a phosphate group

Deoxyribonucleic Acid (DNA)

- Four nitrogen bases:
 - Purines: Adenine (A), Guanine (G)
 - Two-rings
 - Pyrimidines: Cytosine (C), and Thymine (T)
 - Single ring
 - Base-pair rule = each base pairs with its complementary base
 - A always pairs with T; G always pairs with C
- Double-stranded helical molecule (double helix) in the cell nucleus
- Pentose sugar is deoxyribose
- Provides instructions for protein synthesis
- Replicates before cell division ensuring genetic continuity

Figure 2.22 Structure of DNA.

Ribonucleic Acid (RNA)

- Four nitrogen bases:
 - Adenine (A), Guanine (G), Cytosine (C), and Uracil (U) (single ring)
- Pentose sugar is **ribose**
- Single-stranded molecule mostly active outside the nucleus
- Three varieties of RNA carry out the DNA orders for protein synthesis
 - Messenger RNA (mRNA)
 - Transfer RNA (†RNA)
 - Ribosomal RNA (rRNA)

Adenosine Triphosphate (ATP)

- Captures chemical energy in glucose
- Directly powers chemical reactions in cells
- Energy form immediately useable by all body cells

Figure 2.23 Structure of ATP (adenosine triphosphate).

Function of ATP

Phosphorylation

- Terminal phosphates are enzymatically transferred
 to and energize other molecules
 - Coupled to reactions to provide energy
- Such "primed" molecules perform cellular work (life processes) using the phosphate bond energy
 - Amount of energy released and transferred during ATP hydrolysis drives most reactions

Figure 2.24 Three examples of cellular work driven by energy from ATP.

